748 research outputs found

    Structure of hydrated calcium carbonates: A first-principles study

    Get PDF
    The structures of both ikaite (CaCO3·6H2O) and monohydrocalcite (CaCO3·H2O) were computed at the PBE0 level of theory, using all electron Gaussian type basis sets. Correction for the long-range dispersion contribution was included for the oxygen–oxygen interactions by using an additive pairwise term with the atomic coefficients fitted against the calcite vs aragonite enthalpy difference. The potential chirality of monohydrocalcite is discussed, as well as the helical motifs created by the three-fold rototranslational axes parallel to the [001] direction. These elements represent a significant link between monohydrocalcite and vaterite, both appearing as intermediate species during CaCO3 crystallization from amorphous calcium carbonate. The hydrogen bond pattern, never fully discussed for monohydrocalcite, is here described and compared to the available experimental data. Both phases are characterized by the presence of hydrogen bonds of moderate to high strength. Water molecules in monohydrocalcite interact quite strongly with 2 View the MathML source units through such hydrogen bonds, whereas their interaction with each other is minor. On the contrary, water molecules in ikaite create a complex network of hydrogen bonds, where each water molecule is strongly hydrogen bonded to one View the MathML source anion and to one or two other water molecules

    Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires

    Get PDF
    Silicon nanowires have been grown with gallium as catalyst by plasma enhanced chemical vapor deposition. The morphology and crystalline structure has been studied by electron microscopy and Raman spectroscopy as a function of growth temperature and catalyst thickness. We observe that the crystalline quality of the wires increases with the temperature at which they have been synthesized. The crystalline growth direction has been found to vary between and , depending on both the growth temperature and catalyst thickness. Gallium has been found at the end of the nanowires, as expected from the vapor-liquid-solid growth mechanism. These results represent good progress towards finding alternative catalysts to gold for the synthesis of nanowires

    Flap-enabled next-generation capture (FENGC): precision targeted single-molecule profiling of epigenetic heterogeneity, chromatin dynamics, and genetic variation

    Get PDF
    Targeted sequencing is an increasingly sought technology. Available methods, however, are often costly and yield high proportions of off-target reads. Here, we present FENGC, a scalable, multiplexed method in which target sequences are assembled into 5′ flaps for precise excision by flap endonuclease. Recovery of length-matched sequences, amplification with universal primers, and exonucleolytic removal of non-targeted genomic regions mitigate amplification biases and consistently yield ≥80% on-target sequencing. Furthermore, optimized sequential reagent addition and purifications minimize sample loss and facilitate rapid processing of sub-microgram quantities of DNA for detection of genetic variants and DNA methylation. Treatment of cultured human glioblastoma cells and primary murine monocytes with GC methyltransferase followed by FENGC and high-coverage enzymatic methyl sequencing provides single-molecule, long-read detection of differential endogenous CG methylation, dynamic nucleosome repositioning, and transcription factor binding. FENGC provides a versatile and cost-effective platform for targeted sequence enrichment for analysis of genetic and/or epigenetic heterogeneity.This work was supported by grants HDTRA1-16-1-0048 awarded by the Defense Threat Reduction Agency to P.C. and R01 CA155390 awarded by The National Institutes of Health to M.P.K.N

    A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes

    Get PDF
    BACKGROUND: Bread wheat is an allopolyploid species with a large, highly repetitive genome. To investigate the impact of selection on variants distributed among homoeologous wheat genomes and to build a foundation for understanding genotype-phenotype relationships, we performed population-scale re-sequencing of a diverse panel of wheat lines. RESULTS: A sample of 62 diverse lines was re-sequenced using the whole exome capture and genotyping-by-sequencing approaches. We describe the allele frequency, functional significance, and chromosomal distribution of 1.57 million single nucleotide polymorphisms and 161,719 small indels. Our results suggest that duplicated homoeologous genes are under purifying selection. We find contrasting patterns of variation and inter-variant associations among wheat genomes; this, in addition to demographic factors, could be explained by differences in the effect of directional selection on duplicated homoeologs. Only a small fraction of the homoeologous regions harboring selected variants overlapped among the wheat genomes in any given wheat line. These selected regions are enriched for loci associated with agronomic traits detected in genome-wide association studies. CONCLUSIONS: Evidence suggests that directional selection in allopolyploids rarely acted on multiple parallel advantageous mutations across homoeologous regions, likely indicating that a fitness benefit could be obtained by a mutation at any one of the homoeologs. Additional advantageous variants in other homoelogs probably either contributed little benefit, or were unavailable in populations subjected to directional selection. We hypothesize that allopolyploidy may have increased the likelihood of beneficial allele recovery by broadening the set of possible selection targets

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF
    • …
    corecore